http://www.livescience.com/health/080124-dna-telepathy.html
and then gather together, all seemingly without help from any othermolecules,
scientists find. Previously, under the classic understandingof DNA, scientists had
no reason to suspect that double helixes of the
molecule could sort themselves by type, let alone seek each other out. The spiraling structure of DNA includes strings of molecules called bases.
Each of its four bases,commonly known by the letters A, T, C and G, is chemically
attracted toa specific partner — A likes binding to T, and C to G. The scheme binds
paired strands of DNA into the double helix the molecule is famous for.
Scientists investigated double-stranded DNA tagged with fluorescent
compounds. These molecules were placed in saltwater that contained no
proteins or other material that could interfere with the experiment or
help the DNA molecules communicate.
Curiously, DNA with identical sequences of bases were roughly twice
as likely to gather together as DNA molecules with different sequences.
The known interactions that draw the bases together are not the factor
bringing these double helixes close. Double helixes of DNA keep their
bases on their insides. On their outsides, they have highly
electrically charged chains of sugars and phosphates, which obscure the
forces that pull bases together. Although it looks as if spooky action or telepathic recognition is
going on, DNA operates under the laws of physics, not the supernatural.
To understand what researchers conjecture is really happening, think of
double helixes of DNA as corkscrews. The bases that make up a strand of
DNA each cause the corkscrew to bend one way or the other.
Double-stranded DNA with identical sequences each result in corkscrews
"whose ridges and grooves match up," said researcher Sergey Leikin, a
physical biochemist at the National Institute of Child Health and Human
Development in Bethesda, Md.
The electrically charged chains of sugars and phosphates of double
helixes of DNA cause the molecules to repel each other. However,
identical DNA double helixes have matching curves, meaning they repel
each other the least, Leikin explained. The scientists conjecture such
"telepathy" might help DNA molecules line up properly before they get
shuffled around. This could help avoiderrors in how DNA combines,
errors that underpin cancer, aging and other health problems.
DNA molecules can display what almost seems like telepathy, research now reveals.
and then gather together, all seemingly without help from any othermolecules,
scientists find. Previously, under the classic understandingof DNA, scientists had
no reason to suspect that double helixes of the
molecule could sort themselves by type, let alone seek each other out. The spiraling structure of DNA includes strings of molecules called bases.
Each of its four bases,commonly known by the letters A, T, C and G, is chemically
attracted toa specific partner — A likes binding to T, and C to G. The scheme binds
paired strands of DNA into the double helix the molecule is famous for.
Scientists investigated double-stranded DNA tagged with fluorescent
compounds. These molecules were placed in saltwater that contained no
proteins or other material that could interfere with the experiment or
help the DNA molecules communicate.
Curiously, DNA with identical sequences of bases were roughly twice
as likely to gather together as DNA molecules with different sequences.
The known interactions that draw the bases together are not the factor
bringing these double helixes close. Double helixes of DNA keep their
bases on their insides. On their outsides, they have highly
electrically charged chains of sugars and phosphates, which obscure the
forces that pull bases together. Although it looks as if spooky action or telepathic recognition is
going on, DNA operates under the laws of physics, not the supernatural.
To understand what researchers conjecture is really happening, think of
double helixes of DNA as corkscrews. The bases that make up a strand of
DNA each cause the corkscrew to bend one way or the other.
Double-stranded DNA with identical sequences each result in corkscrews
"whose ridges and grooves match up," said researcher Sergey Leikin, a
physical biochemist at the National Institute of Child Health and Human
Development in Bethesda, Md.
The electrically charged chains of sugars and phosphates of double
helixes of DNA cause the molecules to repel each other. However,
identical DNA double helixes have matching curves, meaning they repel
each other the least, Leikin explained. The scientists conjecture such
"telepathy" might help DNA molecules line up properly before they get
shuffled around. This could help avoiderrors in how DNA combines,
errors that underpin cancer, aging and other health problems.
Also, the proper shuffling of DNA is essential to sexual reproduction,
as it helps ensure genetic diversity among offspring, Leikin added.
Powered by ScribeFire.
No comments:
Post a Comment